تفاصيل الوثيقة

نوع الوثيقة : مقال في مجلة دورية 
عنوان الوثيقة :
Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression
Prediction of the aquatic toxicity of aromatic compounds to tetrahymena pyriformis through support vector regression
 
لغة الوثيقة : الانجليزية 
المستخلص : Toxicity evaluation is an extremely important process during drug development. It is usually initiated by experiments on animals, which is time-consuming and costly. To speed up such a process, a quantitative structure-activity relationship (QSAR) study was performed to develop a computational model for correlating the structures of 581 aromatic compounds with their aquatic toxicity to tetrahymena pyriformis. A set of 68 molecular descriptors derived solely from the structures of the aromatic compounds were calculated based on Gaussian 03, HyperChem 7.5, and TSAR V3.3. A comprehensive feature selection method, minimum Redundancy Maximum Relevance (mRMR)-genetic algorithm (GA)-support vector regression (SVR) method, was applied to select the best descriptor subset in QSAR analysis. The SVR method was employed to model the toxicity potency from a training set of 500 compounds. Five-fold cross-validation method was used to optimize the parameters of SVR model. The new SVR model was tested on an independent dataset of 81 compounds. Both high internal consistent and external predictive rates were obtained, indicating the SVR model is very promising to become an effective tool for fast detecting the toxicity. 
ردمد : 1949-2553 
اسم الدورية : Oncotarget 
المجلد : 8 
العدد : 30 
سنة النشر : 1438 هـ
2017 م
 
نوع المقالة : مقالة علمية 
تاريخ الاضافة على الموقع : Monday, July 1, 2019 

الباحثون

اسم الباحث (عربي)اسم الباحث (انجليزي)نوع الباحثالمرتبة العلميةالبريد الالكتروني
Qiang SuSu, Qiang باحثدكتوراه 
Wencong LuLu, Wencong باحثدكتوراه 
Dongshu DuDu, Dongshu باحث رئيسيدكتوراهsdhzdds@163.com
Fuxue ChenChen, Fuxue باحث رئيسيدكتوراهchemfuxue@staff.shu.edu.cn
Bing NiuNiu, Bing باحث رئيسيدكتوراهbniu@gordonlifescience.org
Kuo-Chen ChouChou, Kuo-Chen باحثدكتوراه 

الملفات

اسم الملفالنوعالوصف
 44552.pdf pdf 

الرجوع إلى صفحة الأبحاث